20.
$$\frac{4}{5} + \frac{4}{5} = \frac{8}{5} = \frac{5}{5} + \frac{3}{5} = 1\frac{3}{5}$$

21.
$$\frac{10}{9} = \frac{9}{9} + \frac{1}{9} = 1\frac{1}{9}$$

22.
$$32\frac{4}{3} = 32 + \frac{3}{3} + \frac{1}{3} = 33\frac{1}{3}$$

23. 48 in.; 25%; The perimeter of a square is equal to 4 times the side.

$$4 \times 1$$
 foot = 4 feet

One foot is equal to 12 inches.

$$4 \times 12 = 48$$
 inches;

$$\frac{1}{4} = 25\%$$

- **24. a. 1 sq. ft**; 1 ft \times 1 ft = 1 sq. ft
 - **b. 144 sq. in.;** 12 in. \times 12 in. = 144 sq. in.
- 25. Square
- 26. Median: 41 miles; mode: none; range = 67 13 = 54 miles
- **27. a.** 6° ; $69^{\circ} 63^{\circ} = 6^{\circ}$
 - b. Zero or none

c. 22°F;
$$69$$
°F $- 47$ °F $= 22$ °F

- 28. Quarter
- 29. a. 6 cm (or 60 mm);

$$2 \text{ cm} + 1 \text{ cm} + 2 \text{ cm} + 1 \text{ cm} = 6 \text{ cm}$$

b. 2 sq. cm (or 200 sq. mm);

$$2 \text{ cm} \times 1 \text{ cm} = 2 \text{ sq. cm}$$

30. C

Lesson Practice 7

- **b.** $\frac{1}{10}$; There are ten pennies in a dime.
 - $\frac{1}{10}$; There are ten dimes in a dollar.
 - $\frac{1}{100}$; There are one hundred pennies in a dollar.

$$\frac{1}{100}$$
; $\frac{1}{10} \times \frac{1}{10} = \frac{1}{100}$

c.
$$\frac{3}{4}$$
 of $\frac{1}{2}$
 $\frac{3}{4} \times \frac{1}{2} = \frac{3}{8}$

d.
$$\frac{1}{2}$$
 of $\frac{1}{3}$
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$
 $\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$

e.
$$\frac{2}{5}$$
 of $\frac{2}{3}$
 $\downarrow \qquad \downarrow \qquad \downarrow$
 $\frac{2}{5} \times \frac{2}{3} = \frac{4}{15}$

f.
$$\frac{1}{3} \times \frac{2}{3} = \frac{2}{9}$$

g.
$$\frac{3}{5} \times \frac{1}{2} = \frac{3}{10}$$

h.
$$\frac{2}{3} \times \frac{2}{3} = \frac{4}{9}$$

i.
$$\frac{1}{2} \times \frac{2}{2} = \frac{2}{4} \text{ (or } \frac{1}{2} \text{)}$$

k. $\frac{1}{4}$ **sq. in.;** The area of a square is equal to the length of one side times itself. $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ **sq. in.**

Written Practice

- **1. 19 miles; 17 + m = 36;** 36 17 = 19 miles
- 2. 19 miles; 3m = 57; $57 \div 3 = 19$ miles

4. The factors of 6 are 1, 2, 3, and 6.
The factors of 12 are 1, 2, 3, 4, 6, and 12.
The factors of 6 that are also the factors of 12 are 1, 2, 3, and 6.

5. 12;
$$n = 18 \div 3 = 6$$
, so $2n = 2 \times 6 = 12$

- 6. 100 sq. cm; The area of a square is the length of one side times itself.10 cm × 10 cm = 100 sq. cm
- 7. = 4.5 = 4.500

Solutions

8.
$$\frac{3}{8}$$
, $\frac{1}{2}$, $\frac{2}{3}$, $\frac{5}{5}$, $\frac{4}{3}$

9. a. 32 squares;
$$64 \div 2 = 32$$

b. 16 squares;
$$\frac{1}{2}$$
 of $32 = \frac{1}{2} \times 32 = \frac{32}{2} = 16$

c.
$$\frac{1}{4}$$
; $\frac{16}{64} = \frac{1}{4}$

11.
$$24.86$$
 -9.7
15.16

13.
$$m = \frac{\$36.00}{8}$$
; $\frac{\$ 4.50}{8)\$36.00}$; $\frac{-32}{40}$; $\frac{-40}{00}$

15.
$$\$^{5}_{16.08}$$
 \times 9 \times 9 \times 144.72

16.
$$638$$
 $\times 570$
 44660
 $+ 319000$
363.660

17.
$$3\frac{1}{3}$$

$$+ 1\frac{2}{3}$$

$$4\frac{3}{3} = 5$$

18.
$$1\frac{2}{3}$$
 $+ 1\frac{2}{3}$
 $2\frac{4}{3} = 2 + \frac{3}{3} + \frac{1}{3} = 3\frac{1}{3}$
19. $4 \longrightarrow 3\frac{5}{5}$

19.
$$4 \rightarrow 3\frac{5}{5}$$
 $-1\frac{2}{5} \rightarrow 1\frac{2}{5}$
 $2\frac{3}{5}$

20.
$$\frac{1}{2}$$
 of $\frac{3}{5}$
 $\downarrow \qquad \downarrow \qquad \downarrow$
 $\frac{1}{2} \times \frac{3}{5} = \frac{3}{10}$

21.
$$\frac{1}{3} \times \frac{2}{3} = \frac{2}{9}$$

22.
$$\frac{1}{2} \times \frac{6}{6} = \frac{6}{12} \left(\text{or } \frac{1}{2} \right)$$

23. a. Multiply the number of tickets by \$35.

b. \$350;
$$10 \times $35 = $350$$

24. a.
$$\frac{3}{4} \times \frac{3}{8} = \frac{9}{32}$$
 sq. in.

b.
$$1\frac{1}{2}$$
 in. $\frac{3}{4}$ in.

b. 3 and 4

26. a. $\frac{1}{5}$; There are 5 nickels in a quarter.

b. $\frac{1}{4}$; There are 4 quarters in a dollar.

c. $\frac{1}{20}$; There are 20 nickels in a dollar.

27. The factors of 100 are 1, 2, 4, 10, 20, 25, 50, and 100.

28. See student work.

29.
$$-80^{\circ}$$
F; 80° F -47° F = 33° F

30. 28 seconds; sample: since Luis ran for 4 seconds less than Jaxon, I subtracted 4 seconds from Jaxon's time.

Early Finishers

$$\frac{1}{2}$$
; $\frac{3}{4} \times \frac{2}{3} = \frac{6}{12} = \frac{1}{2}$

Lesson Practice

77

- **a.** 8 oz; One pound is equal to 16 ounces, so one half pound is equal to $16 \div 2 = 8$ oz.
- **b. 500 g**; One kilogram is equal to 1000 grams, then one tennis shoe is equal to one half of a kilogram which is 500 grams.
- **c. 160 oz;** One pound is equal to 16 ounces, so 10 pounds is equal to $16 \times 10 = 160$ oz.
- **d. 32,000 lb;** One ton is equal to 2000 pounds, so 16 tons is equal to $16 \times 2000 = 32,000$ lb.
- e. $10 \times 60 = 600 \text{ yards}$

Written Practice

77

- **1. 1862**; 1926 64 = 1862
- 2. 16.9 + 23.7 + 20.6
- 3. 1.23, 1.32, 2.13, 13.2
- **4.** a. **9** students; $\frac{1}{4} \times 36 = \frac{36}{4} = 9$
 - **b.** 3 students; $\frac{1}{3} \times 9 = \frac{9}{3} = 3$
 - c. $\frac{3}{36}$ (or $\frac{1}{12}$)
- 5. 2000 lb
- 6. $\frac{11}{100}$; 0.11; 11%
- 7. 32 oz; One pound is equal to 16 ounces, so two pounds is equal to $2 \times 16 = 32$ oz.
- 8. 3000 grams; 900 pennies is three times as much as 300 pennies. If 300 pennies have a mass of 1 kilogram, then 900 pennies have a mass of 3 kilograms. 3 kilograms is equal to 3000 grams.
- 9. Segment *AB* 3.5 cm + Segment *BC* + 4.6 cm Segment *AC* 8.1 cm
- **10.** $\frac{9}{4} = \frac{4}{4} + \frac{4}{4} + \frac{1}{4} = 2\frac{1}{4}$
- **11. 2**; 1 + 1 = 2
- **12.** $7\frac{11}{8} = 7 + \frac{8}{8} + \frac{3}{8} = 8\frac{3}{8}$

14.
$$\frac{1}{2} \times \frac{5}{6} = \frac{5}{12}$$

15.
$$\frac{2}{3} \times \frac{3}{4} = \frac{6}{12} \left(\text{or } \frac{1}{2} \right)$$

16.
$$\frac{1}{2} \times \frac{2}{2} = \frac{2}{4}$$
 (or $\frac{1}{2}$)

17.
$$\cancel{\cancel{400}\cancel{\cancel{1}}}.3$$

 -264.7
136.6

18.
$$\$5.67$$

 $\times 80$
 $\$453.60$

19.
$$347$$
 $\times 249$
 3123
 13880
 $+ 69400$
 $86,403$

20.
$$50 \times 50 = 2500$$

Solutions

- 24. About \$1; sample: each stack represents about 25¢ or one quarter, and four quarters is the same as one dollar.
- 25. All three students live more than one half kilometer from school.
- 26. a. 40 mm
 - **b. 120 mm;** The width is equal to $40 \div 2 = 20$. The perimeter is equal to 40 + 20 + 40 + 20 = 120.
 - **c.** 800 sq. mm; $40 \text{ mm} \times 20 \text{ mm} = 80 \text{ sq. mm}$
- 27. The next four terms in this sequence are 3, 5, 7, 3.
- 28. a. $\frac{1}{12}$; There are 12 inches in 1 foot.
 - **b.** $\frac{1}{3}$; There are 3 feet in 1 yard.
 - c. $\frac{1}{36}$; There are 36 inches in 1 yard.
 - **d.** $\frac{1}{36}$; $\frac{1}{12} \times \frac{1}{3} = \frac{1}{36}$
- 29. B
- 30. a. $\frac{3}{16}$
 - **b.** $\frac{3}{16}$ sq. in.; $\frac{1}{4} \times \frac{3}{4} = \frac{3}{16}$ sq. in.
 - c. Square inches; area is measured using square units.

Lesson Practice

а. ____

- **b.** $2^3 = 2 \times 2 \times 2 = 8$
- c. $3 \times 3 \times 3 \times 3 = 81$
- d. $2 \times 2 \times 2 \times 2 \times 2 = 32$
- e. 11 × 11 = 121
- **f. 25;** The expression 2m means "2 times m" (or "m + m"). If 2m = 10, then m = 5. The expression m^2 means "m times m." To find m^2 when m is 5, we multiply 5 by 5. So m^2 equals 25.

- **g.** $(2 \times 10^5) + (5 \times 10^4)$; In expanded notation, 250,000 is expressed like this: $(2 \times 100,000) + (5 \times 10,000)$. Using powers of 10, we replace 100,000 with 10^5 , and we replace 10,000 with 10^4 .
- h. $(3 \times 10^6) + (6 \times 10^5)$; In expanded notation, 3,600,000 is expressed like this: $(3 \times 1,000,000) + (6 \times 100,000)$. Using powers of 10, we replace 1,000,000 with 10^6 , and we replace 100,000 with 10^5 .
- i. $(6 \times 10^4) + (5 \times 10^2)$; In expanded notation, 60,500 is expressed like this: $(6 \times 10,000) + (5 \times 100)$. Using powers of 10, we replace 10,000 with 10^4 , and we replace 100 with 10^2 .
- j. 1; The square root of 1 is 1 because $1 \times 1 = 1$.
- **k.** 2; The square root of 4 is 2 because $2 \times 2 = 4$.
- **I. 4;** The square root of 16 is 4 because $4 \times 4 = 16$.
- **m. 7;** The square root of 49 is 7 because $7 \times 7 = 49$.
- n. <; $\sqrt{36}$ \bigcirc 3^2 6 \bigcirc 3×3 6 < 9
- o. $\sqrt{25} \sqrt{16} = 5 4 = 1$

Written Practice 78

- 2. \$1300 -\$ 860 \$ 440
- 3. There were 4 hours between 4 p.m. and 8 p.m. $\stackrel{3}{79}$ \times 4

× 4 316 quests

- 4. 1000 lb; sample: I know one ton is equal to 2000 pounds, and half of 2000 is 1000.
- **5. 8 ounces;** One pound is equal to 16 ounces, so half of 16 is 8 ounces.

- 6. B
- 7. **C**; One half of 30 is 15 not 16, so the number in the numerator does not make the fraction equal to $\frac{1}{2}$.
- 8. 22 mm; 2.2 cm
- The factors of 6 are 1, 2, 3, and 6.
 The factors of 8 are 1, 2, 4, and 8.
 The factors of 6 and 8 are 1 and 2.
- 10. Segment *LN* Segment *LM*Segment *MN* 3.9 cm

 2.5 cm
- **11. 2**; $\frac{6}{3} = \frac{3}{3} + \frac{3}{3} = 2$
- **12.** (0; 1-1=0)
- **13.** $13\frac{13}{10} = 13 + \frac{10}{10} + \frac{3}{10} = 14\frac{3}{10}$
- 14. 4.6 + 3.27 7.87
- 16. $$2\overset{1}{0}.50$ \times 8 \$164.00
- 17. \$6.30 9)\$56.70 -54 27 -27 00 -0 0
- 18. $9^2 + \sqrt{9}$ $(9 \times 9) + 3$ 81 + 3 = 84
- 19. 58 R 10 80)4650 -400 650 -640 10

- 20. mixed number; $19\frac{3}{6}$ 5)98 $-\frac{5}{48}$ $-\frac{45}{3}$
- **21.** $\frac{3}{8}$; $\frac{3}{4} \times \frac{1}{2} = \frac{3}{8}$
- 22. $\frac{9}{8}$; $\frac{3}{2} \times \frac{3}{4} = \frac{9}{8}$ (or $1\frac{1}{8}$)
- 23. $\frac{2}{6}$; $\frac{1}{3} \times \frac{2}{2} = \frac{2}{6}$ (or $\frac{1}{3}$)
- **24.** a. 3 miles; $1.5 \times 2 = 3$
 - **b.** 8:07 a.m.; 7:55 + 0:12 = 8:07
- 25. The next four terms of the sequence are 7, 3, 5, 7.
- **26. 50 sq. cm**; $10 \text{ cm} \times 5 \text{ cm} = 50 \text{ sq. cm}$
- 27. C
- 28. a. $\frac{3}{7}$; There are 3 vowels: A, A, E
 - **b.** $\frac{2}{7}$; There are 2 As
 - c. ⁵/₇; The letters .A, A, B, C, and E come before G
- **29.** (2 × 10^7) + (5 × 10^6); In expanded notation, 25,000,000 is expressed like this: (2 × 10,000,000) + (5 × 1,000,000). Using powers of 10, we replace 10,000,000 with 10^7 , and we replace 1,000,000 with 10^6 .
- 30. See student work.

Early Finishers

 $(2 \times 10^8) + (5 \times 10^7)$; In expanded notation, 250,000,000 is expressed like this: $(2 \times 100,000,000) + (5 \times 10,000,000)$. Using powers of 10, we replace 100,000,000 with 10^8 , and we replace 10,000,000 with 10^7 .

Lesson Practice

a. $\frac{3}{3}$; To change $\frac{3}{4}$ to $\frac{9}{12}$, we multiply by $\frac{3}{3}$. The fraction $\frac{3}{3}$ is equal to 1, and when we multiply by 1 we do not change the value of the number. Therefore, $\frac{3}{4}$ equals $\frac{9}{12}$.

Solutions

- **b.** $\frac{2}{2}$; To change $\frac{3}{4}$ to $\frac{4}{6}$, we multiply by $\frac{2}{2}$. The fraction $\frac{2}{2}$ is equal to 1, and when we multiply by 1 we do not change the value of the number. Therefore, $\frac{3}{4}$ equals $\frac{4}{6}$.
- **c.** $\frac{4}{4}$; To change $\frac{1}{3}$ to $\frac{4}{12}$, we multiply by $\frac{4}{4}$. The fraction $\frac{4}{4}$ is equal to 1, and when we multiply by 1 we do not change the value of the number. Therefore, $\frac{1}{3}$ equals $\frac{4}{12}$.
- **d.** $\frac{25}{25}$; To change $\frac{1}{4}$ to $\frac{25}{100}$, we multiply by $\frac{25}{25}$. The fraction $\frac{25}{25}$ is equal to 1, and when we multiply by 1 we do not change the value of the number. Therefore, $\frac{1}{4}$ equals $\frac{25}{100}$.
- **e. 3;** We can change the name of a fraction by multiplying by a fraction name for 1. To make the 3 become 9, we must multiply by 3. So the fraction name for 1 that we will use is $\frac{3}{3}$. We multiply $\frac{1}{3} \times \frac{3}{3}$ to form the equivalent fraction $\frac{3}{9}$.
- **f. 10;** We can change the name of a fraction by multiplying by a fraction name for 1. To make the 3 become 15, we must multiply by 5. So the fraction name for 1 that we will use is $\frac{5}{5}$. We multiply $\frac{2}{3} \times \frac{5}{5}$ to form the equivalent fraction $\frac{10}{15}$.
- **g. 6;** We can change the name of a fraction by multiplying by a fraction name for 1. To make the 5 become 10, we must multiply by 2. So the fraction name for 1 that we will use is $\frac{2}{2}$. We multiply $\frac{3}{5} \times \frac{2}{2}$ to form the equivalent fraction $\frac{6}{10}$.
- **h.** $\frac{3}{6}$; $\frac{2}{6}$; $\frac{5}{6}$; We multiply $\frac{1}{2}$ by $\frac{2}{3}$ and $\frac{1}{3}$ by $\frac{2}{2}$. $\frac{1}{2} \times \frac{3}{3}$ = $\frac{3}{6}$ and $\frac{1}{3} \times \frac{2}{2} = \frac{2}{6}$. Then we add $\frac{3}{6}$ and $\frac{2}{6}$ to find their sum. $\frac{3}{6} + \frac{2}{6} = \frac{5}{6}$
- i. $\frac{60}{100}$; 60%; To change the fifths to hundredths, we multiply by $\frac{20}{20}$. $\frac{3}{5} \times \frac{20}{20} = \frac{60}{100}$ which is equivalent to 60%.

Written Practice 79

1. 40 days; 1 ton is equal to 2000 pounds. 2000 ÷ 50 = 40 days.

- 2. One foot is equal to 12 inches. $1\frac{1}{2}$ (12 inches) 1 (12 inches) + $\frac{1}{2}$ (12 inches) 12 inches + 6 inches = 18 inches
- 3. Step 1: Find Toshi's profit on each shovel.
 \$10.95
 -\$ 6.30
 \$ 4.65

Step 2: Multiply profit by 3 to find total profit. \$4.65

- 4. Forty and four hundredths; 10.15 + 29.89 40.04
- 5. $\frac{3}{3}$; To change $\frac{2}{3}$ to $\frac{6}{9}$, we multiply by $\frac{3}{3}$. The fraction $\frac{3}{3}$ is equal to 1, and when we multiply by 1 we do not change the value of the number. Therefore, $\frac{2}{3}$ equals $\frac{6}{9}$.
- 6. 1 in.; 1 in. \times 1 in. = 1 square inch
- 7. The factors of 9 are 1, 3, and 9.
 The factors of 12 are 1, 2, 3, 4, 6, and 12.
 The factors of 9 that are also factors of 12 are 1 and 3.
- 8. $\frac{9}{12}$; $\frac{8}{12}$; $\frac{15}{12}$; We multiply $\frac{3}{4}$ by $\frac{3}{3}$ and $\frac{2}{3}$ by $\frac{4}{4}$. $\frac{3}{4} \times \frac{3}{3} = \frac{9}{12}$ and $\frac{2}{3} \times \frac{4}{4} = \frac{8}{12}$. Then we add $\frac{9}{12}$ and $\frac{8}{12}$ to find their sum. $\frac{9}{12} + \frac{8}{12} = \frac{17}{12}$ equals $1\frac{5}{12}$.

10.
$$6\frac{6}{5} = 6 + \frac{5}{5} + \frac{1}{5} = 7\frac{1}{5}$$

- 11. $5 (3\frac{5}{8} 3)$ $5 - \frac{5}{8}$ $4\frac{8}{8} - \frac{5}{8} = 4\frac{3}{8}$
- **12.** Write the numbers in the same form, then subtract.

14. Write the numbers in the same form, then multiply.

15.
$$m = 30.4 - 24.6$$
; $\overset{29}{\cancel{50}}.4$ -24.6 ; -24.6

16.
$$w = 2.4 + 6.35$$

$$2.4$$

$$+ 6.35$$
8.75

17.
$$n = \frac{6552}{9}$$
; 728
9)6552
-63
25
-18
72
-72
0

19.
$$15^2 - \sqrt{25}$$
 $225 - 5 = 220$

21.
$$\frac{1}{10}$$
; $\frac{1}{2} \times \frac{1}{5} = \frac{1}{10}$

22.
$$\frac{6}{8}$$
; $\frac{3}{4} \times \frac{2}{2} = \frac{6}{8}$ (or $\frac{3}{4}$)

23.
$$\frac{15}{20}$$
; $\frac{3}{5} \times \frac{5}{4} = \frac{15}{20}$ (or $\frac{3}{4}$)

24. a. D;
$$3.5 \times 100 = 350$$

b. 950 fruit cups;
$$9.5 \times 100 = 90$$

25.
$$\frac{5}{6}$$
; There are 5 opportunities it will not be a 4.

28. 4.5 cm;
$$P = 1.5 + 1.5 + 1.5 = 4.5$$

30. About \$500; sample: I rounded \$7995 to \$8000 and rounded \$8499 to \$8500; then I subtracted.

Lesson Practice 80

a. See student work; factor pairs for 14: 1
and 14, 2 and 7; factor pairs for 19: 1 and
19; 14 is composite and 19 is prime.

- c. Factors for 15 are 1, 3, 5, 15; 15 can be drawn using more than two arrays, so 15 is composite; factors for 17 are 1 and 17; 17 can only be drawn using two arrays, so it is prime; see student work.
- d. See student work; sample: 10 and 12 are composite because these numbers of tiles can be arranged in more than one array (1 × 10, 2 × 5 and 1 × 12, 2 × 6, 3 × 4); 11 is prime because 11 tiles can be arranged in only one array (1 × 11).

Written Practice 80

1. Step 1: Find how much money he collected for all the pencils.

Step 2: Find how much profit he made by subtracting the cost.

- **2. 500 pounds;** 1 ton is equal to 2000 pounds. $2000 \div 4 = 500$ pounds.
- 3. The factors of 8 are 1, 2, 4, and 8. The factors of 12 are 1, 2, 3, 4, 6, and 12. The factors of 8 that are the same factors of 12 are 1, 2, and 4.
- 4. 12, 13, 14, 15, 16, 17, 18, 19
- 5. $\frac{3}{3}$; sample: since $3 \times 3 = 9$ and $3 \times 4 = 12$, I used the fraction $\frac{3}{3}$.
- **6.** $\frac{3}{6}$; $\frac{4}{6}$; $1\frac{1}{6}$; We multiply $\frac{1}{2}$ by $\frac{3}{3}$ and $\frac{2}{3}$ by $\frac{2}{2}$. $\frac{1}{2} \times \frac{3}{3} = \frac{3}{6}$ and $\frac{2}{3} \times \frac{2}{2} = \frac{4}{6}$. Then we add $\frac{3}{6}$ and $\frac{4}{6}$ to find their sum. $\frac{3}{6} + \frac{4}{6} = \frac{7}{6} = 1\frac{1}{6}$
- 7. 2 factors; sample; each prime number only has 1 and itself as factors.
- 8. $\frac{3}{8}$, $\frac{6}{12}$, $\frac{4}{6}$, $\frac{5}{6}$, $\frac{7}{7}$
- 9. 220 yards 8)1760 -16 16 -16 00 -0
- **10. 42 mm**; 84 mm \div 2 = 42 mm
- \$11. \$\frac{11.43}{8.43}\$\$ 0.68 \$\frac{15.00}{9.05}\$\$ \$24.16\$\$\$\$\$
- **12.** 6.505
 1.4
 5.105
- 13. Write in the same form, then subtract.

15.
$$w = \frac{\$76.32}{6}$$
; $\frac{\$12.72}{6)\$76.32}$; $\frac{-6}{16}$ $\frac{-12}{43}$ $\frac{-42}{12}$ $\frac{-12}{0}$

16. 64;
$$2 \times 2 \times 2 \times 2 \times 2 \times 2 = 64$$

18.
$$52\frac{1}{7}$$
7)365
-35
15
-14
1

19.
$$\frac{9}{16}$$
; $\frac{3}{4} \times \frac{3}{4} = \frac{9}{16}$

20.
$$\frac{9}{4}$$
; $\frac{3}{2} \times \frac{3}{2} = \frac{9}{4}$ or $\left(2\frac{1}{4}\right)$

21. 30; We can change the name of a fraction by multiplying by a fraction name for 1. To make the 10 become 100, we must multiply by 10. So the fraction name for 1 that we will use is $\frac{10}{10}$. We multiply $\frac{3}{10} \times \frac{10}{10}$ to form the equivalent fraction $\frac{30}{100}$.

22.
$$4\frac{4}{3} = 4 + \frac{3}{3} + \frac{1}{3} = 5\frac{1}{3}$$

23.
$$5 - \frac{1}{5}$$

$$4 \frac{5}{5} - \frac{1}{5} = 4 \frac{6}{5}$$

24.
$$\frac{7}{10} - \frac{7}{10} = 0$$

26. 2; The value of a digit depends upon its place in the number. Here the digit in the millions place is 2.

- **27.** (1 × 10⁸) + (5 × 10⁷); In expanded notation, 150,000,000 is expressed like this: $(1 \times 100,000,000) + (5 \times 10,000,000)$. Using powers of 10, we replace 100,000,000 with 10⁸, and we replace 10,000,000 with 10⁷.
- 28. Geometric; 32, 64
- 29. $\frac{1}{2}$
- 30. $\frac{8}{10}$; $\frac{80}{100}$

Investigation

Focus on

- 1. Origin
- 2. (5, 2)
- 3. (3, 8)
- 4. (4, 4)
- 5. (7, 5)
- 6. (9, 6)
- 7. (1, 6)
- 8. (8, 1)

Activity 1

a. Octagon;

b. See student work.

Focus on

- 9. A (2, 4) and (5, 4)
 - B (2, 1) and (5, 1)
 - C (0, 1) and (3, 1)
- 10. Triangle *B* is a mirror image of triangle *A*, so the transformation is a reflection.
- 11. If triangle ABC is turned so that point C is the center of the turn, then it will move into the position of the image shown. The transformation is a rotation.

Activity 2

- a. See student work.
- b. See student work.
- c. See student work.